Prion Folding Sends a Death Signal in Fungus
نویسنده
چکیده
Prions are kind of like Batman—they have a bad reputation, but they can also serve a number of good purposes. While prion domains—folded regions of proteins that can induce similar folding in other susceptible proteins—are responsible for the human prion diseases and may be involved in other neurodegenerative diseases as well, they have also been linked to normal processes of memory and innate immunity. In the fungus Podospora anserina, the protein HET-S includes a prion-forming domain, which, when it folds into the so-called beta-solenoid conformation, causes the protein to embed in the plasma membrane, where it forms a pore that ultimately results in cell death. One trigger for this folding is interaction with a very similar protein (called HET-s) from a different strain of the same fungus. When the two strains meet, their prion-mediated interaction prevents them from fusing and limits the transmission of pathogens between strains. But HET-s isn’t the only protein that induces prion folding in HET-S, according to a new study by Asen Daskalov, Sven Saupe, and colleagues in this issue of PLOS Biology. They show that the HET-S conformation change can be triggered through interaction with a member of a widely distributed protein family, suggesting that prion-based signal transduction may be more common than currently appreciated (Fig. 1).
منابع مشابه
Signal Transduction by a Fungal NOD-Like Receptor Based on Propagation of a Prion Amyloid Fold
In the fungus Podospora anserina, the [Het-s] prion induces programmed cell death by activating the HET-S pore-forming protein. The HET-s β-solenoid prion fold serves as a template for converting the HET-S prion-forming domain into the same fold. This conversion, in turn, activates the HET-S pore-forming domain. The gene immediately adjacent to het-S encodes NWD2, a Nod-like receptor (NLR) with...
متن کاملPolar substitutions in helix 3 of the prion protein produce transmembrane isoforms that disturb vesicle trafficking.
Prion diseases encompass a diverse group of neurodegenerative conditions characterized by the accumulation of misfolded prion protein (PrP) isoforms. Other conformational variants of PrP have also been proposed to contribute to neurotoxicity in prion diseases, including misfolded intermediates as well as cytosolic and transmembrane isoforms. To better understand PrP neurotoxicity, we analyzed t...
متن کاملInvestigation of Always Present and Spectrum Sensing based Incumbent Emulators
Cognitive radio (CR) technology has been suggested for effective use of spectral resources. Spectrum sensing is one of the main operations of CR users to identify the vacant frequency bands. Cooperative spectrum sensing (CSS) is used to increase the performance of CR networks by providing spatial diversity. The accuracy of spectrum sensing is the most important challenge in the CSS process sinc...
متن کاملFamilial Prion Disease Cases Without Mutation in PRNPGene
Phosphorus (P), in the form of phosphate ion (Pi), is a vital element contributing in biomolecule structures, metabolic reactions, signaling pathways and energy transfer within the living cells. The objective of the present study was to assess the influence of fungal infection on Pi metabolism in compare to the effects of phosphate stress in Arabidopsis. Quantification of total P contents showe...
متن کاملA new prion controls fungal cell fusion incompatibility.
In solving a genetic puzzle posed by George Rizet in 1952 (1), Coustou, Deleu, Saupe, and Begueret report (2) evidence for the first prion (infectious protein) that carries out a normal function. It was studies of scrapie that gave rise to the prion concept, namely, that a normal cellular protein could change to an abnormal form (the prion form) that may be unable to carry out its normal functi...
متن کامل